giovedì 27 dicembre 2012

La quadratura del quadrato (con poesia oulipiana)

La quadratura del quadrato consiste nel tassellare un quadrato il cui lato è un numero intero con altri quadrati di lato intero. Il nome al problema fu dato da William Tutte (1917-2002) per analogia scherzosa con quello della quadratura del cerchio. Senza altre condizioni, la quadratura del quadrato è un compito relativamente semplice. Se tuttavia si richiede che la quadratura sia perfetta, allora le dimensioni dei quadrati più piccoli devono essere tutte diverse e il problema è assai più complicato. Solo nel 1982 si è potuto dimostrare che il quadrato di lato 112 della figura è il più piccolo quadrato quadrato perfetto. 


Il primo riferimento alla dissezione di quadrati in quadrati fu fatto dall’inglese Henry Dudeney, uno dei primi grandi esperti di matematica ricreativa. Nella rivista Strand del gennaio 1902 comparve infatti il rompicapo Lady Isabel's Casket (Lo scrigno di Lady Isabel), che riguardava la dissezione di un quadrato in quadrati di diversa dimensione e in un rettangolo. Il quesito fu poi pubblicato in volume da Dudeney in The Canterbury Puzzles (1907, al n. 40): 


La giovane parente e pupilla di Sir Hugh, Lady Isabel de Fitzarnulph, possiede uno scrigno il cui coperchio è perfettamente quadrato. Esso è intarsiato con tessere di legno e una striscia d’oro, lunga 10 pollici e larga un quarto di pollice. Tutti i giovani che si recano da Sir Hugh per chiedere la mano di Lady Isabel devono risolvere il problema di suddividere il quadrato, a parte la striscia d’oro, in un certo numero di quadrati perfetti, tutti di dimensioni diverse. Solo un giovane riesce dove in molti hanno fallito prima di lui. Ecco la soluzione: 


Il topologo e geometra tedesco Max Dehn si era invece occupato del problema della quadratura del rettangolo, in un articolo pubblicato sui Mathematische Annalen del settembre 1903. Dehn dimostrò che: 
- Un rettangolo può essere suddiviso in quadrati se e solo se i suoi lati sono commensurabili. 
- Se un rettangolo può essere suddiviso in quadrati, allora esistono infiniti modi perfetti (con quadrati di dimensioni tutte diverse). 
Il termine commensurabile significa in proporzione razionale, con entrambi i numeri interi che hanno un sottomultiplo comune. 


Un altro grande matematico ricreativo, Sam Loyd, fu il primo a proporre un quesito di quadratura del quadrato, The Darktown Patch Quilt Puzzle (Il rompicapo della trapunta a pezze di Darktown), che fu pubblicato su Cyclopedia of Puzzles nel 1914 dal figlio dopo la sua morte. Una trapunta quadrata fatta da 12 x 12 pezze quadrate della stessa dimensione deve essere divisa nel più piccolo numero possibile di in 11 pezze quadrate tagliando lungo i lati dei quadrati esistenti. Esistono due possibili soluzioni con 11 quadrati, ma  la quadratura non è semplice né perfetta. 


Nel 1925 il problema della quadratura fu affrontato dal polacco Zbigniew Moroń nell’articolo O Rozkladach Prostokatow Na Kwadraty (Sulla dissezione di un rettangolo in quadrati), nel quale fornì i primi esempi di rettangoli divisi in quadrati diversi, senza tuttavia fornire la procedura di costruzione. Il rettangolo I, di dimensioni 33 x 32 è suddiviso in 9 quadrati, mentre il rettangolo II, di lati 65 x 47, è diviso in 10 quadrati. Più tardi avrebbe raccontato che in quel periodo trovò altri risultati su questo argomento, provando che è impossibile costruire un rettangolo con meno di 9 quadrati diversi. Sostenne anche di essere riuscito a ottenere la prima quadratura perfetta di un quadrato, anni prima che fosse nota la prima soluzione “ufficiale”.


Moroń notò che aggiungendo un quadrato con lo stesso lato a ciascun lato del rettangolo, esso può essere ingrandito indefinitamente. Il matematico americano Pasquale Joseph Federico in seguito avrebbe scoperto che, continuando la procedura per lati alterni, i quadrati corrispondono alla sequenza di Fibonacci e pertanto il rapporto dei lati in questa sequenza infinita si avvicina a phi, il numero aureo. 


Un posto a parte nella vicenda è occupato dal giapponese Michio Abe. Pur lavorando da solo, egli conosceva la scarsa letteratura pubblicata sull'argomento e riuscì nel 1930 a tassellare più di 600 rettangoli perfetti. In un articolo in inglese del 1931 egli dimostrò che si può costruire una serie infinita di rettangoli perfetti composti partendo da un singolo rettangolo perfetto nel quale il rapporto tra i lati si avvicina al limite di 1, ad esempio di dimensioni 191 x 195. Dopo questa pubblicazione, Abe sparì nel nulla. 

Il problema fu affrontato infine da un gruppo di dottorandi in matematica all'Università di Cambridge nel triennio 1936-39. I quattro, Rowland Leonard Brooks, Cedric Smith, Arthur Stone e William Tutte, adottarono un metodo assai originale per i tempi, trasformando la tassellatura quadrata in un circuito elettrico equivalente (che chiamarono diagramma di Smith), considerando i quadrati come resistenze collegate a quelle vicine ad entrambe le estremità, quindi applicarono al circuito le leggi di Kirkhoff e le tecniche di decomposizione circuitale. 

L’analogia con le reti circuitali merita un piccolo approfondimento, per il quale mi avvalgo della testimonianza di William Tutte, che si trova nel dettagliato articolo Squaring the Square pubblicato da Martin Gardner in More Mathematical Puzzles and Diversions (1961). Dopo aver adottato un metodo algebrico, che consentiva di costruire un numero considerevole di rettangoli perfetti, Brooks, Smith, Stone e Tutte abbandonarono questo approccio un po’ empirico in favore di uno più teorico. Smith propose allora un diagramma per rappresentare i rettangoli perfetti come circuiti elettrici. La figura mostra un rettangolo perfetto con a fianco il suo diagramma di Smith. Ogni segmento orizzontale nel disegno è rappresentato nel diagramma da un punto, o “nodo“. Nel diagramma di Smith ogni nodo giace su una proiezione (a destra) del segmento orizzontale corrispondente nel rettangolo. 


Ogni quadrato componente del rettangolo è delimitato sopra e sotto da due dei segmenti orizzontali. Di conseguenza esso è rappresentato da una linea o “filo” che unisce i due nodi corrispondenti. Immaginiamo che una corrente fluisca in ciascun filo. L’intensità della corrente è numericamente uguale al lato del quadrato corrispondente, e il suo verso va dal nodo che rappresenta il valore più basso a quello più alto. Si può immaginare che i due lati orizzontali del rettangolo corrispondano ai poli negativo e positivo di una corrente fatta fluire nel circuito. 

Così concepito, il circuito rappresentato dal diagramma di Smith rispetta le leggi di Kirkhoff per il flusso in una rete circuitale, purché si consideri ogni filo un’unità di resistenza. La prima legge di Kirkhoff afferma che, eccetto che ai poli, la somma algebrica delle correnti che fluiscono verso ogni nodo è zero (la somma delle correnti in entrata è uguale alla somma delle correnti in uscita). Ciò corrisponde al fatto che la somma dei lati dei quadrati posti al di sotto di un dato segmento orizzontale è uguale alla somma dei lati dei quadrati posti al di sopra dello stesso segmento, naturalmente con l’esclusione dei due lati orizzontali del rettangolo. La seconda legge dice che la somma algebrica delle tensioni lungo una linea chiusa (con il segno appropriato in funzione del verso di percorrenza della maglia stessa) è pari a zero. La corrente totale che entra nella rete al polo positivo e esce a quello negativo corrisponde al lato orizzontale del rettangolo, mentre la differenza di potenziale tra i due poli è uguale al lato verticale. 

La scoperta di questa analogia elettrica fu importante perché consentì di collegare il problema della quadratura a una teoria fisico-matematica ben stabilita. Era possibile ottenere e prendere a prestito dalla teoria delle reti elettriche delle formule per le correnti in un diagramma di Smith, e per le dimensioni dei corrispondenti quadrati componenti. Il principale risultato di questa operazione fu la possibilità di calcolare un valore dalla struttura del sistema senza alcun riferimento a quali particolari nodi erano scelti come poli. I quattro chiamarono questo valore complessità della rete. Se si scelgono le unità di misura per il rettangolo corrispondente in modo che il lato orizzontale sia uguale alla complessità, allora i lati dei quadrati componenti sono tutti numeri interi. Inoltre il lato verticale è uguale alla complessità di un’altra rete ottenuta dalla prima identificando i due poli. 


Il diagramma di Smith semplificò la procedura per produrre e classificare i rettangoli con quadratura perfetta. I quattro matematici avevano classificato i rettangoli secondo il loro “ordine”, vale a dire il numero di quadrati che li componevano. Si scoprì così che non esistono rettangoli perfetti fino all'ottavo ordine, e solo due del nono. Ce ne erano 6 del decimo ordine e 22 dell’undicesimo. Si scoprì anche che esistevano rettangoli con lati uguali che davano origine a due diverse scomposizioni, che potevano essere ridotte a una applicando opportune simmetrie. La ricerca proseguì e finalmente il gruppo di Cambridge riuscì a ottenere la quadratura di un quadrato, prima di sessantanovesimo, poi di trentanovesimo e infine di ventiseiesimo ordine, come risultato della fusione di due rettangoli perfetti. Alla fine del 1939 la teoria della quadratura del quadrato era finalmente stabilita e avrebbe dato notevoli frutti nei decenni successivi. 

L’articolo che firmarono alla fine della loro ricerca, The Dissection of Rectangles into Squares (Duke Mathematical Journal, dicembre 1940), coinvolgeva una vasta gamma di discipline matematiche, dalla teoria delle reti elettriche ai grafi planari, dalla teoria dei numeri a quella delle matrici, dalla funzione determinante agli operatori rotore e divergenza, ecc. I loro principali risultati possono essere così sintetizzati:
- Ogni rettangolo quadrato possiede lati ed elementi commensurabili; 
- Ogni rettangolo con lati commensurabili è perfettibile in infiniti modi diversi; 
- Non esistono rettangoli perfetti di ordine inferiore a 9; 
- Scoperta del quadrato perfetto semplice di ordine 39 e del quadrato perfetto composto di ordine 26; 
- Generalizzazioni del problema: rettangoli rettangolati, cilindri e tori quadrati, triangoli equitriangolati e la prova che non è possibile cubare i cubi. 

Nel frattempo, procedendo con metodi prettamente empirici, il tedesco Roland Sprague (1894-1967). aveva trovato la prima soluzione del problema della quadratura del quadrato, pubblicandola su Mathematische Zeitschrift (1939), qualche mese prima di Brooks, Smith, Stone e Tutte. Sprague aveva costruito la soluzione utilizzando diverse copie di varie grandezze dei rettangoli I e II di Moroń, di un terzo rettangolo perfetto di dodicesimo ordine e di altri cinque rettangoli di base, creando un quadrato composto di ordine 55, con il lato di 4205 unità. 


A questo punto l’articolo sarebbe finito, se i meriti di Tutte (e compagni, e anche del rompicapo di Henry Dudeney) non fossero stati riconosciuti dal matematico e scrittore dell’Oulipo Jacques Roubaud, che, nel gennaio di quest’anno, ha pubblicato sul meritorio sito francese Images des Mathématiques del CNRS una sestina lirica (che egli chiama mongine in onore di Gaspard Monge) dal titolo Tutte. La struttura della poesia, molto di fantasia, si basa sulla permutazione di sei parole-rima che si scambiano di posto nelle sei strofe dell’opera. Sfortunatamente, l’opera, il cui originale si trova al link qui sopra, è intraducibile, perché contiene omofonie e giochi di parole tipici del francese. La mia traduzione, assai zoppicante, è un tentativo di far conoscere al lettore italiano questa ennesima contaminazione matematico-letteraria. 

Tutte

Lady Isabel de Fitzarnulph era bella 
Così bella che sua padre la voleva sistemare 
Egli fece battere il tamburo e da ogni lato 
Annunciare che colui che riusciva con quadrati 
Tutti diversi a coprire il suo scrigno d’oro (perfetto 
Quadrato) aveva sua figlia. Tale fu il problema 

II 
Posto ai pretendenti; terribile problema 
Diciamolo; tanto più che ciascuno dei quadrati 
Che sulla superficie si dovevano sistemare 
Avevano (allora la soluzione era bella) 
Un numero intero di pollici per misura del lato, 
Lo scrigno contandone sei cento otto. Perfetto 

III 
Rompicapo. Forse insolubile. Perfetto, 
Troppo? Sir Hugh voleva la sua graziosa e bella 
Bambina serbare per sempre? Quadrati 
Piani ipocriti, allora. La scelta di questo problema 
Lo assicurava che non l’avrebbe dovuta sistemare 
E che lei sarebbe rimasta per sempre al suo lato? 

IV 
Dall’Irlanda, Galles, Scozia e da ogni lato 
D’Inghilterra essi giungono, affrontano il problema 
Giovani, vecchi, grandi, piccoli, per aver la bella, 
Si spremono le meningi, Invano. Fiasco perfetto. 
Ne resta uno. “E tu, Tutte?” “Tutti i miei quadrati 
Vanno bene, my Lord!” Non resta che lor sistemare. 

Tutte viveva con sua mamma, e doversi sistemare 
Non cambiava nulla per lui. Con un accordo perfetto 
Vissero tutti tre (senza alcun problema). 
La sera contemplava sua moglie, a suo lato 
L’ineguale armonia della soluzione bella 
Posta sulla scrivania con i tutti i suoi quadrati. 

VI 
Un giorno, uscito Tutte, sua madre, i quadrati
(Erano ventisei, di differente lato) 
Spostò, facendo le pulizie. Eppure l’ordine perfetto 
Regnava quando rientrò, perché, per poterli sistemare,
Lei aveva risolto in altro modo il problema!
È vera la storia? Non lo so, però è bella!



2 commenti:

  1. il problema di Loyd non dice "nel più piccolo numero di pezze" (altrimenti basterebbe dividere la trapunta in quattro quarti...) ma in esattamente undici pezze, vedi http://www.jwstelly.org/CyclopediaOfPuzzles/PuzzlePage.php?puzzleid=Pz65.3#Pz65.3

    RispondiElimina